Jean-Christophe Jullian, Xavier Franck, Shamil Latypov,
 Tetrahedron: Asymmetry 14 (2003) 963

 Reynald Hocquemiller and Bruno Figadère\*
 Ee >96% (by <sup>1</sup>H NMR)

  $\left( \alpha \right)_{D}^{R} = -191 \ (c \ 0.75; CHCl_3)$  Source of chirality: (R)-mandelic acid

  $C_{14}H_{18}O_3$  Absolute configuration: R

Jean-Christophe Jullian, Xavier Franck, Shamil Latypov, Reynald Hocquemiller and Bruno Figadère\*

 $C_{22}H_{34}O_3$ (*R*)-1-Acetoxy-1-phenyltetradecan-2-one

Jean-Christophe Jullian, Xavier Franck, Shamil Latypov, Reynald Hocquemiller and Bruno Figadère\*

Tetrahedron: Asymmetry 14 (2003) 963

Tetrahedron: Asymmetry 14 (2003) 963

Ee >96% (by <sup>1</sup>H NMR)  $[\alpha]_D^{18} = -128$  (c 0.78; CHCl<sub>3</sub>)

Absolute configuration: R

Absolute configuration: S

Source of chirality: (R)-mandelic acid

Ee >96% (by <sup>1</sup>H NMR)  $[\alpha]_{D}^{18} = -30$  (c 1.09; CHCl<sub>3</sub>) Source of chirality: synthesis from (S)-lactic acid

 $C_9H_{16}O_3$ (S)-2-Acetoxyheptan-3-one

Jean-Christophe Jullian, Xavier Franck, Shamil Latypov, Reynald Hocquemiller and Bruno Figadère\*

C<sub>17</sub>H<sub>32</sub>O<sub>3</sub> (S)-2-Acetoxypentadecan-3-one

Tetrahedron: Asymmetry 14 (2003) 963

Ee >96% (by <sup>1</sup>H NMR)  $[\alpha]_D^{18} = -20$  (c 0.71; CHCl<sub>3</sub>) Source of chirality: synthesis from (S)-lactic acid Absolute configuration: S Han-Xun Wei, Dianjun Chen, Xin Xu, Guigen Li and Paul W. Paré\*

Tetrahedron: Asymmetry 14 (2003) 971

Pure isomer  $[\alpha]_{D}^{25} = -0.73$  (c 1.9, CH<sub>2</sub>Cl<sub>2</sub>) Source of chirality: asymmetric synthesis Absolute configuration: 3R

 $C_{20}H_{26}FIO_3$ (3*R*)-Menthyl-3-hydroxy-3-(4-fluorophenyl)-2-iodomethylenepropanoate

(3S)-Menthyl-3-hydroxy-3-(4-bromophenyl)-2-iodomethylenepropanoate



| Han-Xun Wei, Dianjun Chen, Xin Xu, Guigen Li and Paul W. P                                               | aré*                                      | Tetrahedron: Asymmetry 14 (2003) 971                                                                                                |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Br $G_{20}H_{26}BrIO_{3}$<br>(3 <i>R</i> )-Menthyl-3-hydroxy-3-(4-bromophenyl)-2-iodomethylenepropanoate | Pure<br>[α] <sup>25</sup><br>Sour<br>Abso | isomer<br>= $-0.38$ (c 1.0, CH <sub>2</sub> Cl <sub>2</sub> )<br>ce of chirality: asymmetric synthesis<br>plute configuration: $3R$ |
|                                                                                                          |                                           |                                                                                                                                     |

Han-Xun Wei, Dianjun Chen, Xin Xu, Guigen Li and Paul W. Paré\* Tetrahedron: Asymmetry 14 (2003) 971Pure isomer  $[\alpha]_D^{D5} = -0.32 (c \ 0.32, \ CH_2Cl_2)$ Source of chirality: asymmetric synthesis Absolute configuration: 3S

Han-Xun Wei, Dianjun Chen, Xin Xu, Guigen Li and Paul W. Paré\*  
Pure isomer  

$$[x]_{D}^{25} = -0.51 (c \ 0.42, CH_2Cl_2)$$
  
Source of chirality: asymmetric synthesis  
Absolute configuration:  $3R$   
 $(3R)$ -Menthyl-3-hydroxy-2-iodomethylenepentanoate







Jaime Escalante\* and Miguel A. González-Tototzin

Tetrahedron: Asymmetry 14 (2003) 981



E.e. = 96%  $[\alpha]_{D}^{25} = -61.9$  (*c* 1.1, CHCl<sub>3</sub>) Source of chirality: *N*-phthalyl-L-alanine Absolute configuration: 1S, 2R, 3S

2-[(1S)-1-Methyl-2-oxo-2-(5-oxo-(2R,3S)-2,3-diphenylpyrrolidin-1-yl)-ethyl]-isoindole-1,3-dione









Tetrahedron: Asymmetry 14 (2003) 993 Alessandro Bongini,\* Mauro Panunzio,\* Emiliano Tamanini, Giorgio Martelli, Paola Vicennati and Magda Monari Ee >99% Mp 155-159°C  $[\alpha]_{D}^{20} = +46.9 \ (c \ 0.56, \ CHCl_{3})$ Source of chirality: 4-phenyloxazolidin-2-one Absolute configuration: (4S)-3-[(3R,4R)]C<sub>18</sub>H<sub>16</sub>N<sub>2</sub>O<sub>3</sub> (4S)-3-[(3R,4R)-2-Oxo-4-phenyl-azetidine-3-yl]-4-phenyloxazolidin-2-one Tetrahedron: Asymmetry 14 (2003) 993 Alessandro Bongini,\* Mauro Panunzio,\* Emiliano Tamanini, Giorgio Martelli, Paola Vicennati and Magda Monari Ee >99% Mp 190-195°C OMe  $[\alpha]_{D}^{20} = +144.2$  (c 0.66, CHCl<sub>3</sub>) Source of chirality: 4-phenyloxazolidin-2-one Absolute configuration: (4S)-3-[(2S,3S)]  $C_{19}H_{18}N_2O_4$ (4S)-3-[(2S,3S)-2-(4-Methoxy-phenyl)-4-oxo-azetidine-3-yl]-4-phenyloxazolidin-2-one Tetrahedron: Asymmetry 14 (2003) 993 Alessandro Bongini,\* Mauro Panunzio,\* Emiliano Tamanini, Giorgio Martelli, Paola Vicennati and Magda Monari Ee >99% Mp oil OMe  $[\alpha]_{D}^{20} = +61.3$  (c 1.5, CHCl<sub>3</sub>) Source of chirality: 4-phenyloxazolidin-2-one Absolute configuration: (4S)-3-[(2R,3R)] C19H18N2O4 (4S)-3-[(2R,3R)-2-(4-Methoxy-phenyl)-4-oxo-azetidine-3-yl]-4-phenyloxazolidin-2-one Tetrahedron: Asymmetry 14 (2003) 1009 José G. Fernández-Bolaños,\* Victor Ulgar, Inés Maya, José Fuentes, Mª Jesús Diánez, Mª Dolores Estrada, Amparo López-Castro and Simeón Pérez-Garrido  $[\alpha]_{D}^{22}$  +43 (c 1.1, H<sub>2</sub>O)  $\alpha$  and  $\beta$  anomers in a 34:66 ratio SO<sub>3</sub>K Source of chirality: D-galactose Absolute configuration:  $\alpha$  anomer 1*S*,2*R*,3*S*,4*R*,5*S*;  $\beta$  anomer 1R,2R,3S,4R,5S HC C<sub>6</sub>H<sub>11</sub>KO<sub>8</sub>S Potassium 6-deoxy-D-galactopyranose-6-C-sulfonate

José G. Fernández-Bolaños,\* Victor Ulgar, Inés Maya, José Fuentes, Mª Jesús Diánez, Mª Dolores Estrada, Amparo López-Castro and Simeón Pérez-Garrido

O<sub>3</sub>S

OH

OH

OH SO<sub>3</sub>K

Potassium 6-deoxy-D-galactitol-6-C-sulfonate

C<sub>6</sub>H<sub>13</sub>KO<sub>8</sub>S

HO

HO-

 $C_{12}H_{23}NO_7S$ 1-Cyclohexylamino-1,6-dideoxy- $\alpha$ -D-tagatofuranose-6-*C*-sulfonic acid

José G. Fernández-Bolaños,\* Victor Ulgar, Inés Maya, José Fuentes, M<sup>a</sup> Jesús Diánez, M<sup>a</sup> Dolores Estrada, Amparo López-Castro and Simeón Pérez-Garrido Tetrahedron: Asymmetry 14 (2003) 1009

 $[\alpha]_{D}^{22}$  +31 (c 1.1, H<sub>2</sub>O)  $\alpha$  and  $\beta$  anomers in a 62:38 ratio Source of chirality: D-galactose Absolute configuration:  $\alpha$  anomer 2*S*,3*S*,4*R*,5*S*;  $\beta$  anomer 2*R*,3*S*,4*R*,5*S* 

Tetrahedron: Asymmetry 14 (2003) 1009

 $[\alpha]_D^{22}$  –3 (c 1.1, H<sub>2</sub>O) Source of chirality: D-galactose Absolute configuration: 2*S*,3*R*,4*R*,5*S* 

José G. Fernández-Bolaños,\* Victor Ulgar, Inés Maya, José Fuentes, Mª Jesús Diánez, Mª Dolores Estrada,

Amparo López-Castro and Simeón Pérez-Garrido

HO HO OHOH OH SO<sub>3</sub>K  $C_6H_{13}KO_8S$ Potassium 6-deoxy-D-glucitol-6-*C*-sulfonate Tetrahedron: Asymmetry 14 (2003) 1009

 $[\alpha]_D^{22}$  +6 (c 1.0, H<sub>2</sub>O) Source of chirality: D-glucose Absolute configuration: 2*S*,3*R*,4*S*,5*S* 

José G. Fernández-Bolaños,\* Victor Ulgar, Inés Maya, José Fuentes, M<sup>a</sup> Jesús Diánez, M<sup>a</sup> Dolores Estrada, Amparo López-Castro and Simeón Pérez-Garrido



Tetrahedron: Asymmetry 14 (2003) 1009

 $[\alpha]_D^{22}$  –19 (c 1.0, H<sub>2</sub>O) Source of chirality: D-galactose Absolute configuration: 2*S*,3*R*,4*R*,5*S* 



HO + OH HO - OH - OH - SO<sub>3</sub>-C<sub>6</sub>H<sub>15</sub>NO<sub>7</sub>S·H<sub>2</sub>O 1-Amino-1,6-dideoxy-D-galactitol-6-*C*-sulfonic acid

José G. Fernández-Bolaños,\* Victor Ulgar, Inés Maya, José Fuentes, M<sup>a</sup> Jesús Diánez, M<sup>a</sup> Dolores Estrada, Amparo López-Castro and Simeón Pérez-Garrido Tetrahedron: Asymmetry 14 (2003) 1009

 $[\alpha]_D^{22}$  –5 (c 1.2, H<sub>2</sub>O) Source of chirality: D-glucose Absolute configuration: 2*S*,3*R*,4*S*,5*S* 

>98% ee,  $[\alpha]_{D}^{20} = -22.5$  (c 1.0, CHCl<sub>3</sub>)

Absolute configuration: 1R,2R

Source of chirality: hydrolytic kinetic resolution

-OH-OH $SO_3^ C_6H_{15}NO_7S$ 1-Amino-1,6-dideoxy-D-glucitol-6-*C*-sulfonic acid

·ŇHa

HO-

Tetrahedron: Asymmetry 14 (2003) 1019



 $C_{12}H_{19}O_5P$  Diethyl (1*R*,2*R*)-dihydroxy-2-phenylethanephosphonate

Alina Maly, Barbara Lejczak\* and Pawel Kafarski



 $C_{13}H_{21}O_5P$ Diethyl (1*R*,2*R*)-dihydroxy-2-(*m*-methylphenyl)ethanephosphonate

 $\label{eq:linear} Diethyl~(1S,2S)\mbox{-}dihydroxy\mbox{-}2\mbox{-}(p\mbox{-}chlorolphenyl)\mbox{ethanephosphonate}$ 

Alina Maly, Barbara Lejczak\* and Pawel Kafarski Tetrahedron: Asymmetry 14 (2003) 1019  $>98\% ee, [\alpha]_D^{20} = -37.5 (c \ 1.0, CHCl_3)$ Source of chirality: hydrolytic kinetic resolution Absolute configuration: 1*R*,2*R* Diethyl (1*R*,2*R*)-dihydroxy-2-(o-methylphenyl)ethanephosphonate

Alina Maly, Barbara Lejczak\* and Pawel Kafarski Tetrahedron: Asymmetry 14 (2003) 1019  $>98\% ee, [\alpha]_D^{20} = +43.7 (c \ 1.0, CHCl_3)$ Source of chirality: hydrolytic kinetic resolution Absolute configuration: 1*S*,2*S* 

Tetrahedron: Asymmetry 14 (2003) 1019 Alina Maly, Barbara Lejczak\* and Pawel Kafarski >98% ee,  $[\alpha]_{D}^{20} = +20.8$  (c 1.0, CHCl<sub>3</sub>) Source of chirality: hydrolytic kinetic resolution Absolute configuration: 1S,2S PO<sub>3</sub>Et<sub>2</sub> R C12H18ClO5P Diethyl (1S,2S)-dihydroxy-2-(p-bromophenyl)ethanephosphonate István Bitter,\* Éva Kőszegi, Alajos Grün, Péter Bakó, Krisztina Pál, Tetrahedron: Asymmetry 14 (2003) 1025

> $[\alpha]_{\rm D}^{22} = -61.3 \ (c \ 1, \ {\rm THF})$ Source of chirality: (S)-1,1'-bi-2-naphthol Absolute configuration: 1S,1'S

Tetrahedron: Asymmetry 14 (2003) 1025 István Bitter,\* Éva Kőszegi, Alajos Grün, Péter Bakó, Krisztina Pál, András Grofcsik, Miklós Kubinyi, Barbara Balázs and Gábor Tóth

> $[\alpha]_{D}^{22} = +60.1 \ (c \ 1, \ THF)$ Source of chirality: (R)-1,1'-bi-2-naphthol Absolute configuration: 1R,1'R

István Bitter,\* Éva Kőszegi, Alajos Grün, Péter Bakó, Krisztina Pál, András Grofcsik, Miklós Kubinyi, Barbara Balázs and Gábor Tóth

András Grofcsik, Miklós Kubinyi, Barbara Balázs and Gábor Tóth

 $[\alpha]_{D}^{22} = -110.8 \ (c \ 1, \ THF)$ Source of chirality: (S)-1,1'-bi-2-naphthol Absolute configuration: 1S,1'S

Tetrahedron: Asymmetry 14 (2003) 1025

C72H82O8 5,11,17,23-Tetrakis(1,1-dimethylethyl)-25,27-calix[4](S)-1,1'-bi-2-naphtho-crown-6

Bu



25,27-Calix[4](R)-1,1'-bi-2-naphtho-crown-6

HC









A195

Tetrahedron: Asymmetry 14 (2003) 1037

Alberto Avenoza,\* Jesús H. Busto, Francisco Corzana, Jesús M. Peregrina,\* David Sucunza and María M. Zurbano

Alberto Avenoza,\* Jesús H. Busto, Francisco Corzana, Jesús M. Peregrina,\* David Sucunza and María M. Zurbano

Alberto Avenoza,\* Jesús H. Busto, Francisco Corzana, Jesús M. Peregrina,\* David Sucunza and María M. Zurbano

ΗO

PivO

NHBoc

Ee >95%  $[\alpha]_D^{25} = -1.3$  (*c* 0.87, MeOH) Source of chirality: asymmetric synthesis Absolute configuration: 1S, 2R, 3S

HO  $\bigwedge_{\text{NHBoc}}$   $C_{11}H_{23}NO_5$ (1*S*,2*R*,3*S*)-(2,3-Dihydroxy-1-hydroxymethyl-1-methylbutyl)carbamic acid *tert*-butyl ester

Tetrahedron: Asymmetry 14 (2003) 1037

 $\begin{array}{c} [\alpha]_{L}^{\alpha}\\ [\alpha]_{L}^{\alpha}\\ [\alpha]_{L}^{\alpha}\\ Sou\\ Abs\\ C_{14}H_{21}NO_{5}\\ (1S,2S,3R)-(2,3-Dihydroxy-1-hydroxymethyl-1-methylbutyl)carbamic acid benzyl ester\\ \end{array}$ 

Ee >95%  $[\alpha]_D^{25} = +1.4$  (*c* 0.90, MeOH) Source of chirality: asymmetric synthesis Absolute configuration: 1S, 2S, 3R

Tetrahedron: Asymmetry 14 (2003) 1037

Ee >95%  $[\alpha]_{D}^{25} = -0.4$  (*c* 1.36, MeOH) Source of chirality: asymmetric synthesis Absolute configuration: 1S,2R,3S

NHCbz ` C<sub>14</sub>H<sub>21</sub>NO<sub>5</sub> (1*S*,2*R*,3*S*)-(2,3-Dihydroxy-1-hydroxymethyl-1-methylbutyl)carbamic acid benzyl ester

Alberto Avenoza,\* Jesús H. Busto, Francisco Corzana, Jesús M. Peregrina,\* David Sucunza and María M. Zurbano Tetrahedron: Asymmetry 14 (2003) 1037

Ee >95%

 $[\alpha]_{D}^{25} = -2.5$  (c 1.04, MeOH) Source of chirality: asymmetric synthesis Absolute configuration: 2'S, 3'R, 4'S

 $C_{16}H_{31}NO_6 \\ (2'S,3'R,4'S)-2,2-Dimethyl$ propionic acid 2'-tert-butoxycarbonylamino-3',4'-dihydroxy-2'-methylpentyl ester

Tetrahedron: Asymmetry 14 (2003) 1037

Alberto Avenoza,\* Jesús H. Busto, Francisco Corzana, Jesús M. Peregrina,\* David Sucunza and María M. Zurbano

омом

NHBoc ' C<sub>18</sub>H<sub>35</sub>NO<sub>7</sub>

PivO

Ee >95%  $[\alpha]_D^{25} = -7.1$  (*c* 0.95, MeOH) Source of chirality: asymmetric synthesis Absolute configuration: 2'S,3'R,4'S

(2'S,3'R,4'S)-2,2-Dimethylpropionic acid 2'-tert-butoxycarbonylamino-3'-hydroxy-4'-methoxymethoxy-2'-methylpentyl ester























Tetrahedron: Asymmetry 14 (2003) 1063

E.e. >99% (by GC on chiral column)  $[\alpha]_{D}^{20}$  -60.3 (c = 1, CHCl<sub>3</sub>) Source of chirality: (S)-(1-phenylethyl)amine Absolute configuration: (1R,2R,1'S)

 $C_{16}H_{22}N_2$ 1-[(1'-Methylbenzyl)amino]-2-isopropyl-cyclobutanecarbonitrile







 Molika Truong, Frédéric Lecornué and Antoine Fadel\*
 Tetrahedron: Asymmetry 14 (2003) 1063

 H F 

 H F 

 H F 

 H F 

 H F 

 H F 

 F F 

 F F 

 F F 

 F F 

 F F 

 F F 

 F F 

 F F 

 F F 

 F F 

 F F 

 F F 

 F F 

 F F 

 F F 

 F F 

 F F 

 F F 

 F F 

 F F 

 F F 

 F F 

 F F 

 F F 

 F F 

 F F 

 F F 

E.e. 3976 (by GC on chiral column) [ $\alpha$ ]<sub>D</sub><sup>20</sup> -39.5 (c=0.7, CHCl<sub>3</sub>) Source of chirality: (S)-(1-phenylethyl)amine of precursor Absolute configuration: (1*R*,2*R*)

Molika Truong, Frédéric Lecornué and Antoine Fadel\*Tetrahedron: Asymmetry 14 (2003) 1063E.e. >99% (from amide precursor)<br/> $[\alpha]_{20}^{D}$  -43 (c=0.65, H<sub>2</sub>O),  $[\alpha]_{20}^{D}$  -43.9 (c=0.64,<br/>MeOH)MeOH<br/>C<sub>8</sub>H<sub>16</sub>ClNO<sub>2</sub>Source of chirality: (S)-(1-phenylethyl)amine of<br/>precursor<br/>Absolute configuration: (1R,2R)1-Amino-2-isopropyl-cyclobutanecarboxylic acid, hydrochlorideTetrahedron: Asymmetry 14 (2003) 1063

 $C_8H_{16}N_2O$ 

1-Amino-2-isopropyl-cyclobutanecarboxamide

Molika Truong, Frédéric Lecornué and Antoine Fadel\* Tetrahedron: Asymmetry 14 (2003) 1063E.e. >99% (from amide precursor) [ $\alpha$ ]<sub>D</sub><sup>20</sup> -51.7 (c=0.51, H<sub>2</sub>O) Source of chirality: (S)-(1-phenylethyl)amine of precursor Absolute configuration: (1*R*,2*R*) 1-Amino-2-isopropylcyclobutanecarboxylic acid















## Ashok K. Yadav,\* Meera Manju and Pukh Raj Chhinpa Tetrahedron: Asymmetry 14 (2003) 1079 $[\alpha]_{D}^{22} = -6.4 (c \ 0.78, Et_2O)$ E.e. = 50% $B_{D}$ Absolute configuration: S $C_{14}H_{26}O$ Source of chirality: asymmetric reduction